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The nature of the Dirac delta-function singularity in the expansion theorem 
for an irregular solid spherical harmonic about another centre is discussed 
for the case l= 2. An alternative derivation, motivated by Hobson's derivative 
expression for solid spherical harmonics and utilizing Gauss' Divergence 
Theorem, is presented. The orientation dependence is then simply derived 
from the rotational properties of spherical harmonics. 
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1. Introduction 

An intriguing aspect of the expansion of the irregular solid spherical harmonics 
r-l- I Y["(O, O) in terms of solid spherical harmonics about another centre [1-3] 
is the appearance for l -  m/> 2 of certain singular terms involving Dirac 6-functions, 
first observed by Pitzer, Kern and Lipscomb [4-6]. 

These authors considered integrals of the type 

f f (r  a)r~t- l Y~'(OB, (o B) (1.1) dV 

where f(rA) is some function expressed in terms of coordinates with origin at 
centre A, and (rn, 0 B, ~bB) are the polar coordinates with respect to another origin 
at centre B. Their technique involved a very careful handling of the volume in the 
vicinity of the centre r B = 0. 

A later, alternative, approach due to Kay, Todd and Silverstone [7] used Fourier 
transform techniques, and invoked the theory of generalized functions [8] to 
obtain the 6-function terms. 
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In this paper, we derive the b-function term for the case l= 2 by utilizing Gauss' 
divergence theorem. In doing so, we clarify its relation to the standard generalized 
function realization of the 3-dimensional Dirac b-function 

V 2 ( r  - 1)= - 4 n  b(r), (1.2) 

which may also be interpreted in terms of the Green's function for Laplace's 
equation [9]. This gives an immediate intuitive feel for the nature of this term. 

The importance of this term can be gauged from the fact that early calculations of 
anisotropic proton hyperfine interactions failed to take account of this term and 
thus found expressions for some integrals differing by an algebraic term from the 
correct results, as described by Pitzer e t  al.  [4]. Indeed, in some circumstances, 
the missing term could even give the dominant contribution. 

2. Calculation of the Delta-Function Term 

Our starting point is the formula [10, 11] 

r-l-tP~'(cosO) e+-im~:(-l)t[(l-m),]-'~x+_i~y ) ~ )  (r-') (2.1) 

where P~ are the standard associated Legendre functions [12] 1 

The case of most interest is the dipolar-type operator with l-- 2, a practical ap- 
plication of which has recently been given by us [13]. From Eq. (2.1) we have 

0 2 
2r- 3P2(cos 0) = ~ Z  2 ( r -  1). (2.2) 

The right-hand side of Eq. (2.2) is so reminiscent of Eq. (1.2) that it should now 
come as no surprise that a b-function term arises from the left-haM side of Eq. (2.2). 

Z 

A Fig. 1. The systems of coordinates 

1 We use this definition; it differs from that of Hobson [10] by a factor of ( -  1)% 
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Our method is based on that of Pitzer et al. [4], but we use Eq. (2.2) to convert 
the volume integral to a surface integral, part of which is trivially obtained by 
analogy with Eq. (t .2). Following Ref. [4], consider the expansion of the function 
f (r  A ) as a Taylor series about the point r B = r A - R, where R is the relative vector 
between the two centres, displaced along the z-axis, as in Fig. 1 (the case of 
arbitrary displacement direction is treated in Sect. 3). Then 

f (r A) = f ( R )  + r,. V f (R) + . . . .  (2.3) 

Now power counting in the integral (1.1) shows that the second and higher terms 
in Eq. (2.3) cannot give any divergence problems for l = 2  even near the surface 
of the sphere r A--- R. However, any non-zero contribution from the first term in 
Eq. (2.3) appearing in (1.1) through 

f (R ) fa r~ 3p2(cos 0n) dV, (2.4) 

where A is an infinitesimal region containing rn= 0, is equivalent to saying that 
there must be a term involving 3(ra--R ) in the expansion of the harmonic 
r~ 3P2(cos 0B) in terms of rA, OA, i.e. with respect to the centre at A. 

For the cases l=  2, m = _+ 1, the @integration will automatically give zero con- 
tribution. 

Since the expansion formulae [1, 2] change their character according as rA<>R, 
we wish to evaluate the volume integral appearing in (2.4) in the spherical shell 
centred on A and bounded by r A = R_+ e, where e is infinitesimal. As in Ref. [4], 
since the crucial point is clearly rn= 0, one excludes a small sphere of radius e 
centred on B from the volume of integration A, and need only consider integration 
to some fixed finite distance %(< R) from B (see Fig, 1), since later e tends to zero. 

Our method of evaluation hinges on Gauss' theorem and integral [14J. We recall 
Eq. (2.2) and convert the volume integral 

f~ 02 
I=  ~ (r~ 1) dV (2.5) 

(where the integrand is now free of singularities in the volume A) to a surface 
integral by Gauss' theorem: 

I= ~(r[~l)~.dS. (2.6) 

Here, /~ is the unit vector in the z-direction and dS is the surface element with 
normal directed outwards. The surface S consists of the top shell surface T with 
r a = R +~ and the underneath shell surface U with r a = R - s ,  out as far as the 
surface of radius r o centred on B, the part W of this latter surface enclosed by the 
former shell, and the (inside) surface S of the small sphere with radius e centred 
on B. (See Fig. 1.) 
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It follows immediately as for Gauss' integral formula [-t4] that 

~zz (r~ t)~. d S =  + 4=/3 (2.7) 

z 

independent of the value of e. The plus sign occurs because the outward normal 
to our surface points into the sphere and the factor �89 (by symmetry) because the 
differential operator in Eq. (2.5) is not the full V 2. 

We also immediately deduce that 

Lim~_, o ~ ( r / j  t ) ~ . d S = 0  (2.8) 

w 

because r B = r o is a fixed finite radius and the surface width of order 2e tends to 
zero. 

It remains to evaluate over the relevant parts T and U of the top and underneath 
shell surfaces the integral 

f~(r~l)',dS=~ffzBrB3pdpd(9 (2.9) 

since dS .  lc is just the signed projection of the curved surface element dS onto the 
x - y  plane, which may then be expressed in cylindrical polar coordinates. Here, 
4) is the azimuthal angle measured around the z~-axis, and p is the perpendicular 
distance from the zB-axis to a point on the shell. The -T- signs refer to T and U 
respectively. The ~b integral immediately gives a factor 2=. 

To evaluate Eq. (2.9) it is convenient to express the variables in terms of the polar 
angle 0 = 0 B �9 

zn = r~ cos 0, p - r B sin 0. 

Thus 

r~ a dp = cos 0 dO + sin Or~ * d G . 

On the surfaces T and U, the cosine rule gives 

r~ + 2Rr B cos 0 = +_ 2Re + ez 

where _+ refers to T and U respectively. Thus 

cos Or~ 1 dr B = sin 0 d O -  R - 1 drn. 

Combining (2.10), (2.11) and (2.13) we get 

zBr~ 3p dp=cos  0 sin Or~ 1 alp 

= sin 0 d O -  R - 1 sin 2 0 d G 

On the top surface T, (2,12) gives 

FB= --R COS 0"-[-[-R 2 cos  2 0 + 2 R e + e 2 ]  1/z 

(2.10) 

(2,11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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SO 

r s : R [ - c o s  0+ Icon 013 +terms of order e. (2.16) 

One can of  course use (2.15) in (2.14) to evaluate the integral (2.9). Much easier 
integrals are obtained by using (2.16) in (2.14) to evaluate (2.9), after noting that 
the right-hand sides of (2.14) and (2.16) are free of any possible singularity, no 
matter how small e is. In either case we find, after splitting the range of  0 integration 
into two parts about re/2 as implied by (2.16), that 

L i m ~ o ~  zsr[~3p dp= 1 +cos  ~-2cos3 ~ (2.17) 
i f f  

T 

where 7 is the final limit as the shell width 2e ~ 0 of  the angle between the radius 
line r 0 and the positive z-axis. This is given from (2. l 2) by 

cos 7=  - � 8 9  1% (2.18) 

so ~ > re/2. 

On the underneath surface U, 

r s=  - R  cos OT[R 2 cos 2 0-2R~+~2] 1/2 (2.19) 

where the T signs correspond respectively to whether 08 decreases (from re) or 
then increases as r 8 increases and moves along U (see Fig. 1). The minimum 
value attained by 0 clearly approaches re/2 for very small e. Integration as above 
then gives 

~zBr[~3p dp= - 1 +cos  ~ -~cos  3 7. (2.20) Lim~_, o 

u 

Combining all these results, we have proved via surface integration that 

L i m ~  o ( r ~  3Pc(cos 0 8 ) d V =  - 4rc/3 (2.21) 
i )  

3 

as required. That is, the expansion of  r~ 3Pz(cOS 08) about the second centre A 
contains the singular term - (4~z/3) 6(r A - R), when R is directed along the z-axis. 
This term must be included when evaluating integrals of  the type (1.1) f o r / = 2  
when the point r 8 = 0 is contained in the integration volume. 

This is the approach, based on expansion theorems such as those of  Chiu [-2], 
which was used by us in analytically evaluating some integrals of  the type (1.1) 
whenf(r A) is the square of  a Slater wavefunction centred on A [13]. 

3. Orientation Dependence 

We conclude by discussing the case when R is not necessarily directed along the 
z-axis. 
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The result obtained by the procedure of Pitzer et al. [4] might have appeared not 
to be orientation-dependent if one only had to consider a small spherical volume 
centred on B. However, it is the fact that the expansion nature changes [1] at 
r A = R which leads to the consideration of part of the thin shell about r a-- R near 
r A =R.  This shell piece (see Fig. 1) clearly defines a direction (normal to its mid- 
point) and thus gives an orientation dependence in the general case. 

We now recover the general orientation result [7] for l = 2  directly from the 
preceding z-direction result by a straightforward application of the transformation 
properties of the surface spherical harmonics [15] Y[" under the rotation group 
[16]. 

Let OR,, ~b R, be the polar coordinates of a general displacement vector R'  relative 
to the R along the (old) z-axis considered above. Then if rA=rB+R'  , the Euler 
angles of the rotation about B from the direction of R'  to the direction of R are, 
as described by Chiu [2], 0, - OR,, - qbR,. Then from the transformation property 
of the surface spherical harmonics under rotations given by Rose [16] 

Y?(OB, G )  = Z D~!m (0, - OR,, - 4R,) Y;" ' (G,  0', ). (3.1) 
m t 

Here 0~, 4~ are the polar angles of r~ relative to the direction R'  and 0B, qgB 
are those relative to R; ,~(z) is the matrix element of the (2l+ 1)-dimensional /-.'am, m 

representation of the rotation group. 

Denoting by { }~ the b-function term in the expansion, we therefore have for the 
case l=  2, where only m'--0 is known to contribute, 

{r~bV~(O,, ~b,)}a = D (oZm)( 0, -0R ' , -4 )R ' ){ r~  3"/~ , qg~)}o (3.2) 

= Y~(OR, , 4) R , ) ( -  4zc/3) b(r a - R')  (3.3) 

as desired. In deriving (3.3) from Eq. (3,2), we have used the standard relations 
[16] of the Do,,'s to the Y/~ together with the result of our preceding cal- 
culation which in fact corresponded to polar angles (0~, q~) measured with respect 
to the displacement direction. 

This completes our derivation of the orientation-dependence of the b-function 
term in the expansion of the irregular solid spherical harmonic with l=  2 relative 
to a second centre from which it is separated by an arbitrarily directed vector R'. 
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